The Quiet Revolution
In Interactive Rendering

Matt Pharr
Neoptica

November 9, 2005



Offline Rendering 5 Years Ago




Interactive 5 Years Ago

-
I,
-

09e 100" I
Quake 3 (id Software)



Modern Offline Rendering

Madagascar (PDI/Dreamwors)




Modern Interactive Rendering

Getaway P53/ Screen Test @ 2005 Sony Computer Entertainment Europe

The Getaway 3 (SCEE)



Modern Offline Rendering

Starship Troopers (Tippett Studio)



Modern Interactive Rendering

I-8 (Insomniac Games)



Are the offline images 1,000,000 times better than the
Interactive ones?



What’s Happened in 5 Years?

e T[he remarkable story of modern graphics processing units
— GPUs have taken much better advantage of semiconductor
trends than CPUs
— Consistent > Moore's law performance growth, no signs of
slowing down
e Interplay of GPU capabilities and software R&D
— New graphics algorithms invented that use GPU optimally
— Few approaches from offline have been useful for interactive
— — Offline-quality doesn’t necessitate using the old offline
algorithms



Overview

e Technology trends and graphics hardware
e Characteristics of the two types of rendering
e \What factors contribute to the 1,000,000x perf. difference?
— How efficiently does offline use the CPU?
— How is innovation in interactive rendering algorithms
Improving image quality?
- Hardware's impact on software and algorithms
e Open challenges and the impact of future architectures



Technology Trends And Graphics Hardware

NI IGN.COM

Project Gotham Racing 3 (Bizarre Creations)




The Basic Hardware Graphics Pipeline

Application

Command

Geometry

Rasterization

Texture

Fragment

Display




The Basic Hardware Graphics Pipeline

Object-space triangles Screen-space lit triangles




The Basic Hardware Graphics Pipeline

Screen-space triangles Fragments



The Basic Hardware Graphics Pipeline

Fragments Framebuffer Pixels



Application

The Programmable Hardware Graphics Pipeline

Command

Application

Geometry

Vertex
Program

Rasterization

Rasterization

Texture

Fragment

Fragment
Program

Display

Display




GPU Architecture

e Highly parallel
e Efficient triangle rasterization
e Separate programmable vertex and pixel processing
— 32-bit floating point math
— ADD, MUL, RCP, CALL, RET, ...
— Arbitrary memory reads. Writes limited.
— Wasn't programmable at all in 1999!



GPU Architecture

Czioros G5UY 22 Programmable Cores
‘ Command and & ‘ ' 152 FP32 mult/add units
~ifs NS i e mim N 22 rop/sqriunits
1 1 1 | 32 GB/sec memory BW
Triangle Setup, Rasterizer I
—- [ Zcuiil <>  shader Threiad Dispatch |
IR A A A A A A A 2 R
_E\ ‘Jj ”J: I : | :\ | \:\ | \:\ [ O [ B :\ I : | :\ HJ:\ HJ:\ HJ:\_IE

-
| | |

e e e e I
1 1 1 1 1 1 I 1 | | | |

Fragment Crossbar I

(Bill Mark and Henry Morteon)



GPU Parallelism

e Task, data, and instruction parallelism all used
e 3 vertex processors, 24 pixel on GeForce 7800
o Vertex

— 5 FLOPs per clock per processor

— MIMD
o Pixel

— 8-12 FLOPs per clock per processor
— SIMD



GPU Memory System

e Specialized for streaming linear access
e Arbitrary writes (mostly) not allowed
— Avoids ordering problems from parallel execution
e Impact of memory latency well-hidden
— This makes peak perf. easier to get than on a CPU



Good News and Not Enough Good News...

e Transistor density (Moore's law, 50% /yr)

e Clock speed (15%/yr)
— Together these give +71% per year capability
— a.k.a. 1bx in 5 years.

e DRAM bandwidth increasing at 25% vyear
e DRAM latency decreasing at 5% year



GFLOPS

Implications for CPUs and GPUs

200 . . - . . | - T
m— NVIDIA
AT
150 L — Intel |
100 F -
50 F .
dual-core
U ) HI
2001 2002 2003 2004 2005 2006

Year

(John Owens, UC Davis)



What Do You Get In a $400 GPU?

e Computation: peak "150 GFLOPS
e Memory architecture

— 256MB local memory

— "24GB/s to local mem

— 1-2 GB/s to system mem



Compute/Bandwidth on Modern GPUs

e FLOPs per word of off-chip bandwidth
— 2002: 2
— 2003: 2.66
— 2004: 6
— 2005: 10
e It's easy to be b/w limited...



Characteristics Of The Two Types of Rendering

BSEWWorkilniErogressEREormulal@negsiGamel=i2005iSonyiC omputegEntertainmentELropesS sy
=i A 3 = e e e B nF ]

Formula One Racing (SCEE)




Rendering As Data Compression

e Start with multi-GB scene description

e Do a significant amount of computation

e Generate a few million RGB pixels (few MB of output)

e How much pre-processing work is worthwhile to speed up
computation?



Offline Rendering

e Pre-rendered images
— Hours per image, no problem
e Generally passive viewer
e Movies, TV, etc.
e Almost completely done on CPUs
— Flexibility is most important
— Director is king; may make significant changes late in the
process
— May tweak a character, textures, etc., from shot to shot



The Offline Rendering Problem

e Goals: high quality (“perfect”) images

e [hroughput generally more important than latency
e Render a handful of times until happy with results
e Then put it on film and you're done



Offline Rendering: Implications

e Scene description can be as complex as necessary
— Add detail as much as needed to achieve look

e Slow frame causes artists/ TDs pain, doesn’'t matter to
consumer

e Optimizing the pipeline has limited benefit: cost/benefit ratio
Is different than for interactive



The Interactive Rendering Problem

e Latency is the only thing that matters
— Slow frame is unacceptable: avg of 60 fps doesn’'t matter if
sometimes it's 2 fps
e Almost entirely using graphics processors (GPUs)
e Render billions of times
e Harder than offline:
— User moves the camera (subject to constraints)
— World is dynamic/can be changed by the user



Interactive Rendering: Implications

e Scene descriptions are necessarily efficient

e Frame to frame coherence is taken advantage of

e Time spent on precomputation/scene optimization can be
amortized over billions of renderings

e Very important to find ways to use the GPU efficiently



How Efficiently Does Offline Rendering Use the
CPU?

Resident Evil 5 (Capcom)



Offline Efficiency of CPU Use

e Guesstimates based on Pellacini et al. 2005, “LPICS: A Hybrid
Hardware-Accelerated Relighting Engine for Computer
Cinematography”

e Video frame 4h9m for 216k pixels

e 13.7M shading calculations (63/pixel!)

e Assuming:

— Avg. 100k executed shading instructions

— 90% of time spent on shading

— 4:1 CPU instruction per shading instruction
e — 6 TFLOPs to render image



Offline Efficiency of CPU Use

e 6 TFLOPs to render image
e In 4h9m, CPU can do 179 TFLOPs
e — CPU utilization of 3.3%
— Waiting for data from memory, disk
— Software overhead in return for flexibility



Offline Efficiency of CPU Use

e 30x from poor CPU utilization
e 10x from GPU FLOPS / CPU FLOPS
— “40x next-gen console FLOPS / GPU FLOPS
e < half the 1M difference
e Still another factor of 1000-3000x to account for
— Some due to image quality difference
— Some due to more efficient algorithms in interactive



How Is Innovation in Interactive Rendering
Algorithms Improving Image Quality?

S.T.A.L.LK.E.R. (GSC Game World)



Three Big Contributing Factors

e GPU performance cliffs are large

— Must stay close to GPU fast path

— Easier to achieve good GPU utilization than good CPU

utilization?

e The benefits from staying on the GPU fast path are enormous
e Everyone has a GPU

— Many more developers working on interactive algorithms

— Millions of GPUs in PCs — larger incentive to use efficiently



How To Be GPU-Friendly

e Move per-vertex work to per-pixel if doing so makes triangles
bigger / reduces the number of vertices substantially
e Pre-process now for faster rendering later
— Visibility / potentially visible sets
— Model simplification / optimization
— Precomputed radiance transfer
e Examples
— Displacement mapping
— Billboards
— Mesh simplification
— Ambient occlusion



Displacement Mapping

e Classic technique from offline for adding fine detail to surfaces
e Texture map defines offset from base surface
e Offline approach:

— Finely tessellate to pixel-sized triangles

— Move triangle vertices appropriately

— Aggressively discard triangles when done with them



Displacement Mapping

(Ivan Neulander, Rhythm and Hues Studios)



Displacement Mapping

e Offline approach not at all suited to current hardware:
— GPU is balanced for "8 pixel big triangles
— Not enough vertex processing power for many small triangles
— Very small triangles cause poor utilization throughout the
pipeline
e Therefore, invent new techniques that give the same effect but
are better suited to the hardware



Displacement Mapping

e GPU has much more pixel processing power than vertex

e Very small triangles are bad all around

e — draw bigger triangles, but do work in pixel processor to
compute effect of displacement

e Representative approach: Donnelly’'s distance map-based ray
tracing



Distance Map-Based Sphere Tracing




Bump Mapping

(William Donnelly)



Displacement Mapping

(William Donnelly)



How Do You Render A Forest Full of Trees?

e Desired scene complexity is growing faster than image

resolution
e Offline: model each tree down to the leaves, even the trees

that are a mile away
— “Wow, how come the renderer is so slow?”

e [he above was a slight exaggeration
— When sufficiently painful, will also model simpler trees for

the distance, use billboard impostors
— This incurs cost that must be worthwhile in the grand

scheme of things



How Do You Render A Forest Full of Trees?

e Interactive: pain threshold is much lower than offline
— much quicker to go to more efficient representations
— Similar issues with very small triangles and bad GPU
utilization
— How can you draw complex objects in a way suited to the
GPU?
— And by the way, dynamic lighting would be nice as well
e More sophisticated billboard representations
— Small pre-processing cost, significant benefits
— Represent the model in a way that is friendly to GPU



Billboard Clouds

Behrendt et al.



Billboard Clouds

Behrendt et al.



How Do You Render a 2M Polygon Character?

e Offline: draw 2M polygons
e Interactive: No thanks! Can we simplify without losing detail?

Unreal Engine 3 (Epic Games)



How Do You Render a 2M Polygon Character?

Unreal Engine 3 (Epic Games)



How Do You Render a 2M Polygon Character?

Unreal Engine 3 (Epic Games)



5,287 Triangles Is Much Nicer

Unreal Engine 3 (Epic Games)



Ambient Occlusion

e [echnique pioneered by ILM

e Observation: for static model, precompute how exposed to the
environment each vertex is

e This value is very useful for shading—makes crevices dark, etc.



Ambient Occlusion

Bunnell



Ambient Occlusion

e Offline approach
— Compute these values in a preprocess
— Look them up at render-time

e Directly applicable to interactive

e But what if the model is animated?



Represent Mesh With Oriented Disks

Bunnell



Dynamic Ambient Occlusion

e Represent mesh with oriented disks
e Build tree to represent them hierarchically
— Far away groups of disks can be merged into a single disk,
etc.
e At each point to shade, traverse tree, adaptive termination
— This is easy to do on a GPU pixel processor
e Result: interactive dynamic ambient occlusion



Ambient Occlusion

e Weaknesses: not 100% accurate
e But it does look right, and works well in practice...
e And it's interactivel



The Good News For Interactive Rendering

e The complexity found in offline scenes is not a prerequisite to
images of offline quality
— Number of objects, shaders, textures, etc, only tangentially
relevant
e Offline has long claimed the pain they go through is necessary
for high-quality images
— This i1s demonstrably wrong
— "“Toy Story"-quality will be (has been?) rendered in real time
with far fewer FLOPs than were used to render it originally



Open Challenges and Future Architectures

S.T.A.L.LK.E.R. (GSC Game World) /
The Courtyard House (Henrik Wann Jensen)



Open Problems in Interactive Rendering

e Solved already in offline
— No more visible polygons (curved surfaces should look
curved)
— Good transparency solution
— Anti-aliasing
e Not yet completely solved anywhere
— Infinitely detailed environments
— Dynamic lighting in dynamic environments



GPGPU For Graphics

e “General purpose computation on GPUs"

e GPUs have many FLOPs — use them for numerical
computation

e Many techniques for abusing the GPU to apply those FLOPs
to non-graphics problems

e (See gpgpu.org)



GPGPU For Graphics

e GPU as data parallel processor

e Memory system designed to stream through data
— Not so good for data reuse though

e GPGPU application areas
— Protein folding
— FFT, matrix computation



GPGPU For Graphics

e Can use approaches from GPGPU to do different types of
graphics on GPU

e Not limited to rasterizing triangles, GPU z-buffer approach

e Purcell et al's and Carr et al's GPU ray tracing, ...

e Rapid improvement in GPU capabilities makes this increasingly

appealing



Upcoming Console Architectures

e PlayStation 3 (Cell + RSX)

e XBox 360 (Multicore PPC + GPU)

e 100s of GFLOPs on both CPU and GPU

e Most important, fast connection between the two
— "20GB/s bidirectional bus
— vs. PCI-E 4GB/s peak (not yet seen in practice)



Implications of Console Architectures

e GFLOPs available on both GPU and CPU
— Can get perf. even with branchy code, small amounts of
parallelism
— Can now consider algorithms not suited to GPU alone
e Bandwidth allows round trips

— No longer limited by the unidirectional PC graphics pipeline

— Though N.B. the 40x ratio of FLOPs/float b/w
e What is the future for PCs?



What Can The Two Sides Teach Each Other?

e Offline — interactive
— Quality and variety of visual effects to strive for
— Not so much on the algorithms side?
e Interactive — offline
— What quality is possible from interactive?
— Can it deliver the last 5% in quality? At what cost?
— Are there benefits of giving up that last 5%7?
- e.g. artists are more effective



What Is The Future of Offline Rendering?

e Rate of innovation in interactive shows no sign of slowing

e But what is wrong with 12 hour render times, anyway?
— Only a problem if someone is sitting waiting for it; doesn’t

directly affect the consumer

e Specialized tools can be effective if they deliver “good enough”
for the job at hand
— e.g. Pixar's LPICS lighting tool

e |s the engineering cost of fixing the pipieline less than the cost
of having artists wait?



Future Architectures

e Not much graphics left in graphics hardware
e Will something new change this trend?
— Hardware ray tracing?
e Or are GPUs soon to be a parallel array of fp units with a DVI
connection on the back?
— CPU and GPU manufacturers are both heading this way
from different starting points
e Multi-core/Cell trends will continue on CPU side
— Where best to put FLOPs and with what programming
model still TBD



Future Issues on The Software Side

e How best to use 4,000 FLOPs per pixel?
e Will 40,000 actually lead to better images?
— Big question for both h/w and s/w side
— 30 MFLOPs (as in offline) probably never needed?
e Architectures aren’t easy to program, debug on
— Concurrency, asynchronous data transfer, ...
— How best to use two FLOP heavy processors with very

different sweet spots?



Implications

e Many big problems to address on the s/w side
— s/w is again becoming the main area for innovation in
Interactive graphics
— Until the wheel of reincarnation turns again...
e h/w manufacturers (and MSFT) have less control /influence
— Good for developers
— MSFT is likely more or less neutral to this
— Hard for h/w vendors to differentiate on anything other than
computation performance



Sources/References

e “Streaming Architectures And Technology Trends”, John
Owens, in GPU Gems 2

e "“Real-Time Programmable Shading”, Bill Mark, in Texturing
And Modeling: A Procedural Approach

e Pellacini et al. 2005, “LPICS: A Hybrid Hardware-Accelerated
Relighting Engine for Computer Cinematography”

e GPGPU slides (lan Buck, Mike Houston, Pat Hanrahan, ...)

e John Owens Graphics Architecture slides

e Bill Mark Graphics Architecture slides



e Craig Kolb

e John Owens
e Bill Mark
Aaron Lefohn
Kiril Vidim¢ce
Doug Epps

o
o
o
e Eric Leven

Acknowledgments



Questions?



