The Quiet Revolution
In Interactive Rendering

Matt Pharr
Neoptica

November 9, 2005



Offline Rendering 5 Years Ago




Interactive 5 Years Ago

-
I,
-

09e 100" I
Quake 3 (id Software)



Modern Offline Rendering

Madagascar (PDI/Dreamwors)




Modern Interactive Rendering

Getaway P53/ Screen Test @ 2005 Sony Computer Entertainment Europe

The Getaway 3 (SCEE)



Modern Offline Rendering

Starship Troopers (Tippett Studio)



Modern Interactive Rendering

I-8 (Insomniac Games)



Are the offline images 1,000,000 times better than the
Interactive ones?



What’s Happened in 5 Years?

e T[he remarkable story of modern graphics processing units
— GPUs have taken much better advantage of semiconductor
trends than CPUs
— Consistent > Moore's law performance growth, no signs of
slowing down
e Interplay of GPU capabilities and software R&D
— New graphics algorithms invented that use GPU optimally
— Few approaches from offline have been useful for interactive
— — Offline-quality doesn’t necessitate using the old offline
algorithms



Overview

e Technology trends and graphics hardware
e Characteristics of the two types of rendering
e \What factors contribute to the 1,000,000x perf. difference?
— How efficiently does offline use the CPU?
— How is innovation in interactive rendering algorithms
Improving image quality?
- Hardware's impact on software and algorithms
e Open challenges and the impact of future architectures



Technology Trends And Graphics Hardware

NI IGN.COM
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The Basic Hardware Graphics Pipeline

Object-space triangles Screen-space lit triangles




The Basic Hardware Graphics Pipeline

Screen-space triangles Fragments



The Basic Hardware Graphics Pipeline

Fragments Framebuffer Pixels



Application
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GPU Architecture

e Highly parallel
e Efficient triangle rasterization
e Separate programmable vertex and pixel processing
— 32-bit floating point math
— ADD, MUL, RCP, CALL, RET, ...
— Arbitrary memory reads. Writes limited.
— Wasn't programmable at all in 1999!



GPU Architecture
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GPU Parallelism

e Task, data, and instruction parallelism all used
e 3 vertex processors, 24 pixel on GeForce 7800
o Vertex

— 5 FLOPs per clock per processor

— MIMD
o Pixel

— 8-12 FLOPs per clock per processor
— SIMD



GPU Memory System

e Specialized for streaming linear access
e Arbitrary writes (mostly) not allowed
— Avoids ordering problems from parallel execution
e Impact of memory latency well-hidden
— This makes peak perf. easier to get than on a CPU



Good News and Not Enough Good News...

e Transistor density (Moore's law, 50% /yr)

e Clock speed (15%/yr)
— Together these give +71% per year capability
— a.k.a. 1bx in 5 years.

e DRAM bandwidth increasing at 25% vyear
e DRAM latency decreasing at 5% year



GFLOPS

Implications for CPUs and GPUs
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What Do You Get In a $400 GPU?

e Computation: peak "150 GFLOPS
e Memory architecture

— 256MB local memory

— "24GB/s to local mem

— 1-2 GB/s to system mem



Compute/Bandwidth on Modern GPUs

e FLOPs per word of off-chip bandwidth
— 2002: 2
— 2003: 2.66
— 2004: 6
— 2005: 10
e It's easy to be b/w limited...



Characteristics Of The Two Types of Rendering
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Rendering As Data Compression

e Start with multi-GB scene description

e Do a significant amount of computation

e Generate a few million RGB pixels (few MB of output)

e How much pre-processing work is worthwhile to speed up
computation?



Offline Rendering

e Pre-rendered images
— Hours per image, no problem
e Generally passive viewer
e Movies, TV, etc.
e Almost completely done on CPUs
— Flexibility is most important
— Director is king; may make significant changes late in the
process
— May tweak a character, textures, etc., from shot to shot



The Offline Rendering Problem

e Goals: high quality (“perfect”) images

e [hroughput generally more important than latency
e Render a handful of times until happy with results
e Then put it on film and you're done



Offline Rendering: Implications

e Scene description can be as complex as necessary
— Add detail as much as needed to achieve look

e Slow frame causes artists/ TDs pain, doesn’'t matter to
consumer

e Optimizing the pipeline has limited benefit: cost/benefit ratio
Is different than for interactive



The Interactive Rendering Problem

e Latency is the only thing that matters
— Slow frame is unacceptable: avg of 60 fps doesn’'t matter if
sometimes it's 2 fps
e Almost entirely using graphics processors (GPUs)
e Render billions of times
e Harder than offline:
— User moves the camera (subject to constraints)
— World is dynamic/can be changed by the user



Interactive Rendering: Implications

e Scene descriptions are necessarily efficient

e Frame to frame coherence is taken advantage of

e Time spent on precomputation/scene optimization can be
amortized over billions of renderings

e Very important to find ways to use the GPU efficiently



How Efficiently Does Offline Rendering Use the
CPU?

Resident Evil 5 (Capcom)



Offline Efficiency of CPU Use

e Guesstimates based on Pellacini et al. 2005, “LPICS: A Hybrid
Hardware-Accelerated Relighting Engine for Computer
Cinematography”

e Video frame 4h9m for 216k pixels

e 13.7M shading calculations (63/pixel!)

e Assuming:

— Avg. 100k executed shading instructions

— 90% of time spent on shading

— 4:1 CPU instruction per shading instruction
e — 6 TFLOPs to render image



Offline Efficiency of CPU Use

e 6 TFLOPs to render image
e In 4h9m, CPU can do 179 TFLOPs
e — CPU utilization of 3.3%
— Waiting for data from memory, disk
— Software overhead in return for flexibility



Offline Efficiency of CPU Use

e 30x from poor CPU utilization
e 10x from GPU FLOPS / CPU FLOPS
— “40x next-gen console FLOPS / GPU FLOPS
e < half the 1M difference
e Still another factor of 1000-3000x to account for
— Some due to image quality difference
— Some due to more efficient algorithms in interactive



How Is Innovation in Interactive Rendering
Algorithms Improving Image Quality?

S.T.A.L.LK.E.R. (GSC Game World)



Three Big Contributing Factors

e GPU performance cliffs are large

— Must stay close to GPU fast path

— Easier to achieve good GPU utilization than good CPU

utilization?

e The benefits from staying on the GPU fast path are enormous
e Everyone has a GPU

— Many more developers working on interactive algorithms

— Millions of GPUs in PCs — larger incentive to use efficiently



How To Be GPU-Friendly

e Move per-vertex work to per-pixel if doing so makes triangles
bigger / reduces the number of vertices substantially
e Pre-process now for faster rendering later
— Visibility / potentially visible sets
— Model simplification / optimization
— Precomputed radiance transfer
e Examples
— Displacement mapping
— Billboards
— Mesh simplification
— Ambient occlusion



Displacement Mapping

e Classic technique from offline for adding fine detail to surfaces
e Texture map defines offset from base surface
e Offline approach:

— Finely tessellate to pixel-sized triangles

— Move triangle vertices appropriately

— Aggressively discard triangles when done with them



Displacement Mapping

(Ivan Neulander, Rhythm and Hues Studios)



Displacement Mapping

e Offline approach not at all suited to current hardware:
— GPU is balanced for "8 pixel big triangles
— Not enough vertex processing power for many small triangles
— Very small triangles cause poor utilization throughout the
pipeline
e Therefore, invent new techniques that give the same effect but
are better suited to the hardware



Displacement Mapping

e GPU has much more pixel processing power than vertex

e Very small triangles are bad all around

e — draw bigger triangles, but do work in pixel processor to
compute effect of displacement

e Representative approach: Donnelly’'s distance map-based ray
tracing



Distance Map-Based Sphere Tracing




Bump Mapping

(William Donnelly)



Displacement Mapping

(William Donnelly)



How Do You Render A Forest Full of Trees?

e Desired scene complexity is growing faster than image

resolution
e Offline: model each tree down to the leaves, even the trees

that are a mile away
— “Wow, how come the renderer is so slow?”

e [he above was a slight exaggeration
— When sufficiently painful, will also model simpler trees for

the distance, use billboard impostors
— This incurs cost that must be worthwhile in the grand

scheme of things



How Do You Render A Forest Full of Trees?

e Interactive: pain threshold is much lower than offline
— much quicker to go to more efficient representations
— Similar issues with very small triangles and bad GPU
utilization
— How can you draw complex objects in a way suited to the
GPU?
— And by the way, dynamic lighting would be nice as well
e More sophisticated billboard representations
— Small pre-processing cost, significant benefits
— Represent the model in a way that is friendly to GPU



Billboard Clouds

Behrendt et al.



Billboard Clouds

Behrendt et al.



How Do You Render a 2M Polygon Character?

e Offline: draw 2M polygons
e Interactive: No thanks! Can we simplify without losing detail?

Unreal Engine 3 (Epic Games)



How Do You Render a 2M Polygon Character?

Unreal Engine 3 (Epic Games)



How Do You Render a 2M Polygon Character?

Unreal Engine 3 (Epic Games)



5,287 Triangles Is Much Nicer

Unreal Engine 3 (Epic Games)



Ambient Occlusion

e [echnique pioneered by ILM

e Observation: for static model, precompute how exposed to the
environment each vertex is

e This value is very useful for shading—makes crevices dark, etc.



Ambient Occlusion

Bunnell



Ambient Occlusion

e Offline approach
— Compute these values in a preprocess
— Look them up at render-time

e Directly applicable to interactive

e But what if the model is animated?



Represent Mesh With Oriented Disks

Bunnell



Dynamic Ambient Occlusion

e Represent mesh with oriented disks
e Build tree to represent them hierarchically
— Far away groups of disks can be merged into a single disk,
etc.
e At each point to shade, traverse tree, adaptive termination
— This is easy to do on a GPU pixel processor
e Result: interactive dynamic ambient occlusion



Ambient Occlusion

e Weaknesses: not 100% accurate
e But it does look right, and works well in practice...
e And it's interactivel



The Good News For Interactive Rendering

e The complexity found in offline scenes is not a prerequisite to
images of offline quality
— Number of objects, shaders, textures, etc, only tangentially
relevant
e Offline has long claimed the pain they go through is necessary
for high-quality images
— This i1s demonstrably wrong
— "“Toy Story"-quality will be (has been?) rendered in real time
with far fewer FLOPs than were used to render it originally



Open Challenges and Future Architectures

S.T.A.L.LK.E.R. (GSC Game World) /
The Courtyard House (Henrik Wann Jensen)



Open Problems in Interactive Rendering

e Solved already in offline
— No more visible polygons (curved surfaces should look
curved)
— Good transparency solution
— Anti-aliasing
e Not yet completely solved anywhere
— Infinitely detailed environments
— Dynamic lighting in dynamic environments



GPGPU For Graphics

e “General purpose computation on GPUs"

e GPUs have many FLOPs — use them for numerical
computation

e Many techniques for abusing the GPU to apply those FLOPs
to non-graphics problems

e (See gpgpu.org)



GPGPU For Graphics

e GPU as data parallel processor

e Memory system designed to stream through data
— Not so good for data reuse though

e GPGPU application areas
— Protein folding
— FFT, matrix computation



GPGPU For Graphics

e Can use approaches from GPGPU to do different types of
graphics on GPU

e Not limited to rasterizing triangles, GPU z-buffer approach

e Purcell et al's and Carr et al's GPU ray tracing, ...

e Rapid improvement in GPU capabilities makes this increasingly

appealing



Upcoming Console Architectures

e PlayStation 3 (Cell + RSX)

e XBox 360 (Multicore PPC + GPU)

e 100s of GFLOPs on both CPU and GPU

e Most important, fast connection between the two
— "20GB/s bidirectional bus
— vs. PCI-E 4GB/s peak (not yet seen in practice)



Implications of Console Architectures

e GFLOPs available on both GPU and CPU
— Can get perf. even with branchy code, small amounts of
parallelism
— Can now consider algorithms not suited to GPU alone
e Bandwidth allows round trips

— No longer limited by the unidirectional PC graphics pipeline

— Though N.B. the 40x ratio of FLOPs/float b/w
e What is the future for PCs?



What Can The Two Sides Teach Each Other?

e Offline — interactive
— Quality and variety of visual effects to strive for
— Not so much on the algorithms side?
e Interactive — offline
— What quality is possible from interactive?
— Can it deliver the last 5% in quality? At what cost?
— Are there benefits of giving up that last 5%7?
- e.g. artists are more effective



What Is The Future of Offline Rendering?

e Rate of innovation in interactive shows no sign of slowing

e But what is wrong with 12 hour render times, anyway?
— Only a problem if someone is sitting waiting for it; doesn’t

directly affect the consumer

e Specialized tools can be effective if they deliver “good enough”
for the job at hand
— e.g. Pixar's LPICS lighting tool

e |s the engineering cost of fixing the pipieline less than the cost
of having artists wait?



Future Architectures

e Not much graphics left in graphics hardware
e Will something new change this trend?
— Hardware ray tracing?
e Or are GPUs soon to be a parallel array of fp units with a DVI
connection on the back?
— CPU and GPU manufacturers are both heading this way
from different starting points
e Multi-core/Cell trends will continue on CPU side
— Where best to put FLOPs and with what programming
model still TBD



Future Issues on The Software Side

e How best to use 4,000 FLOPs per pixel?
e Will 40,000 actually lead to better images?
— Big question for both h/w and s/w side
— 30 MFLOPs (as in offline) probably never needed?
e Architectures aren’t easy to program, debug on
— Concurrency, asynchronous data transfer, ...
— How best to use two FLOP heavy processors with very

different sweet spots?



Implications

e Many big problems to address on the s/w side
— s/w is again becoming the main area for innovation in
Interactive graphics
— Until the wheel of reincarnation turns again...
e h/w manufacturers (and MSFT) have less control /influence
— Good for developers
— MSFT is likely more or less neutral to this
— Hard for h/w vendors to differentiate on anything other than
computation performance
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